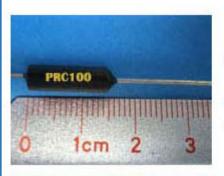


JIN ZON ENTERPRISE CO., LTD.

TEL:886-2-2711-1093~5 FAX:886-2-2731-0902 ,2776-4624 地址:台北市長安東路二段171號4樓之3 Email:jinzon@ms2.hinet.net


PRC100 (Std.) Custom Series with your desired Ohmic value @ 0°C. .25W Wire Wound Axial Lead Sensor

Electrical & Physical Specifications:

Diameter: 15.24mm (.600") **Length:** 4.78mm (.188")

Lead Dimensions: .029" dia. x 1.4" long (min.)

Engineering Attributes:

RESISTANCES & TOLERANCES

You can select any value from 50Ω to $5K\Omega$ @ 0°C, in tolerances from \pm 0.03% (1/4 Din) to \pm 0.24% (DIN \times 2)

TCR CHARACTERISTICS AVAILABLE:

From ± 3000 ppm/°C. to ± 4000 ppm/°C. (between 0°C. and ± 100 °C.) in 50ppm steps with the same linear tracking characteristics as the PRC100 Std. Ref. Series

STABILITY OF CALIBRATION

All PRC100 Sensors are closely matched & repeatable part-to-part. They have the ability to reproduce output readings consistently at the same temperature reference points under the same conditions & in the same direction.

STABILITY VS. TIME

The change in the original resistance (Ro) @ 0°C, is less than \pm .1°C, or \pm .038% after 10 cycles from 0°C, to +150°C,

SHELF LIFE

Shelf life stability is ±0.002%/year @ 25°C, with no load.

POWER RATINGS VS. AMBIENT TEMPERATURE RANGE

The PRC100 is ideal as a compensator to offset drift or negative selfgenerating changes in resistance as a result of an excitation of power to .25W @ +125°C. to zero power @ +125°C.

THERMAL TIME CONSTANT

The time required for our PRC100 sensor to indicate 63.2% of a new impressed temperature from a step change of 0°C, to +100°C, can be customized to your specs, as low as less than 1 second.

CONSTRUCTION DETAILS

Wire: Ni (Nickel), Co (Copper), Mn (Manganin) & Fe (Iron)

Substrate: epoxy or ceramic filled Terminals: solderable hot-tinned copper

Protective Seal: Moisture & solvent resistant epoxy

Click here for PRC100 Tracking Chart

A series of varying resistor styles and sizes available, depending on the desired application. These low-cost sensors track like platinum standards but are much more versatile. They are linear tracking special-purpose temperature sensors with TCR characteristics from +3000 ppm/°C, to 4000 ppm/°C & follow the well-defined curve and linear slope of platinum.

RESISTANCE TEMPERATURE CHARACTERISTIC (Rt)

Rt is defined by IEC standard, pub. 751: alpha = 0.00385 ohm/ohm/°C.*

For range -40°C. to 0°C: RT = Ro[1+At+Bt²+C(t-100°C.) t³]

For range $0^{\circ}C$. to $+150^{\circ}C$: RT = Ro(1+At+Bt²)

Constants in this equation:

 $A = 3.79782 \times 10^{-3} B = 6.502 \times 10^{-7} C = 4.3735 \times 10^{-12}$

 $Rt = Ro[1+At+Bt^2]$

Rt = $100[1+(3.79782 \times 10^{-3} \times 100)+(6.502 \times 10^{-7} \times 100^{2})]$

Rt = 100[1+.379782 +.006502]

 $Rt = 100 \times 1.386284$

Rt = 138.628 ohms at 100°C.

 $Rt = Ro[1+At+Bt^2+C(t-100) t^3]$

Rt = 100[1+(-.1519128)+(.00104032)+(.00003918656)]

 $Rt = 100 \times .8491667$

 $Rt = 100[1+(3.79782 \times 10^{-3} \times -40)+(6.502 \times 10^{-7} \times -40^{2})+(4.3735 \times 10^{-42} \times (-40^{-1}00) \times -40^{3})]$

Rt = 84,916 ohms at -40°C.

*Theoretical curve & slope based on values of the International Practical Temperature Scale (IPTS-68 & 90).

Fixed points are in Degree Celsius (°C.) Ro = 0°C. The other reference temperature used in the equation is +100°C however this can be replaced by any temperature desired with respect to the base temperature of 0°C. The PRC100 Std. Ref. follows a well-defined theoretical curve & linear slope from base 0°C. proving that most reference points are calculable within very close tolerances (Ratio=Rt/Ro)

Details

SKU PRC100 (Custom Value) (Std.)

Type Axial

Length 4.78mm (.188")

Lead Dimensions .029" dia. × 1,4" long (min.)

Diameter 15.24mm (.600")

TCR Char. +3000ppm/°C. to +4000ppm/°C. between 0°C. and +100°C.

Temperature 65° C, to $+150^{\circ}$ C. Resistance 50Ω to $5K\Omega$ @ 0° C

Tolerance to ±.03%

Stability to $\pm .005\%/\text{yr.}$ at $+25^{\circ}\text{C}$

Max Watts .25 Lead Free Yes